發表文章

目前顯示的是有「洗錢」標籤的文章

洗錢猖獗,人工智慧應戰!重新定義反洗錢新規則(下)

圖片
本文為下篇,上篇請看此 連結 人工智慧應用於防制洗錢的方式: 從大數據中辨識可疑訊息 所有的網路資料,最初都是未整理的大數據,是非結構式的資訊。而 人工智慧 可自動判別非結構式的網路資訊,若偵測到跟金融交易或相關資訊,便能迅速提前通知,以有效防範詐騙或是大量金錢的異常出入。 人工智慧挖掘交易者的人際關係 問題帳戶背後所呈現的個體、群體交易聯繫,可讓 人工智慧 透過最短路徑算法搜尋洗錢個體之間的中介。比如:若是企業與企業之間帳戶,直接交易百萬金額,其洗錢疑慮較低;若是百萬金額分批從數個不同公司轉出,但共同轉入的相同的個人帳戶,其疑慮就比較高。 自然生成可疑活動報告(SAR) 根據 1970 年的銀行保密法(BSA),反洗錢技術通常不會在其他報告(例如:貨幣交易報告)下標記可疑活動。金融機構有責任在 30 天內就其認為可疑或異常的任何賬戶活動提交報告。如有必要收集更多證據,可延長不超過60天。 交易監控閥值 依循交易偵測需求(例如:金額、次數、天期…)可依需求於系統上自行調整,即時監控可疑交易。(例如:個人帳戶與企業帳戶分類不同,交易的監控標不同) 如何判別疑似洗錢的客戶交易 當消費者進行免臨櫃的線上開戶,要如何進行身份認證?如何確認消費者本人真的有交易的意願?歸功於 人工智慧 發展的突飛猛進,AI 擁有「了解你的客戶」(Know Your Customer,KYC)以及「了解你的員工」(Know your Employee,KYE)的反內部詐欺制度。 善用防制洗錢的 人工智慧 應用與技術,便能協助反洗錢的工作人員們能專心擬定更精明的應對策略、工作效率也隨之更高!    

洗錢猖獗,人工智慧應戰!重新定義反洗錢新規則(上)

圖片
從 2020 年開始, COVID-19  疫情所帶來的經濟破壞,導致消費者與金融機構間的交易迅速轉往線上支付。許多面臨物價通膨的民眾,在荷包不斷縮水的情況下開始思考,若只將錢存入銀行過於欠缺彈性,但是使用信用卡、銀行貸款或融資,卻侷限在個人的信用評比而有其限制。因此,非銀行體系的私人金融單位在前述狀況下得以興起;這些單位濫用網路的各種交易工具,利用個人以利滾利的投機心態,催生了購買資產、存入金融機構帳戶或匯至人頭帳戶等洗錢方式。 (示意圖/取自網路) 機會伴隨風險,需投入洗錢防制人力 獲得2020年度最佳「反洗錢解決方案」,全球數據分析領域領導者(SAS)、安侯建業聯合會計事務所(KPMG),及台灣反洗錢推廣協會(ACAMS)最新發布的反洗錢技術研究顯示,美國銀行業每年投入反洗錢的預算已高達 250 億美元,因此各國財政部試圖建立更加嚴謹精準的反洗錢機制。台灣的金融監督管理委員會,作為主管反洗錢政策的政府機關,則在2020年8月正式發布「金融科技發展路徑圖」,積極協助各金融機構尋求新的市場需求與價值,共同打造安全的金融科技生態圈。 目前大部分銀行均採用「規則基礎系統」(rules-based)的方法偵測非法洗錢。但是,面對系統每次數千甚至上萬筆警訊,卻只能先以人工過濾判斷。同時,隨著偵測技術與時俱進,相關工作人員也增加不少負荷心力。因此,在金融單位系統不見得有良好串接或資料管理,便需藉由新的科技工具主導改變環境。 金融資安守門員: 人工智慧 定義反洗錢新規則 在各國不斷構思下,經過改良的資安技術,不只可用來保障網路安全,同時也能減輕人力負擔。SAS 就許多國外金融機構發展的經驗指出,人工智慧(AI)和 機器學習 技術(ML),在反洗錢趨勢下不斷成長,超過半數以上(57%)受訪者已經在反洗錢程序中部署 AI/ML,或預計在 12-18 個月內設置這項技術。因此, 人工智慧 的運用不只作為產品服務面的多樣化,更成為金融業發展洗錢防制的核心技術,有助於在大數據中找出共通模式與連結,實踐資安的核心價值。 下篇請看此 連結